If you don't see your institution, add your dataset to the main dataverse named "RepOD".
Select the dataverse to which you want to add the new dataset:
You need to Sign In/Sign Up to add a dataset.
Share this dataset on your favorite social media networks.
Kulisz, Monika; Zgórniak, Piotr, 2022, "Experimental and Numerical Study of Thermal Conditions in Magnesium Alloy Milling", https://doi.org/10.18150/TUOQDW, RepOD, V1
Learn about Data Citation Standards.
The aim of the scientific activity was to determine the effect of milling process parameters such as: technological parameters (cutting speed vc, feed per tooth fz, depth of cut ap) and tool tip geometry (different rake angles γ) on the chip temperature in the cutting zone. An additional aim of the research was to determine the interdependencies between the technological parameters and the tool geometry. As a result of the simulations, it was also possible to develop process models, which allows for the forecast of the maximum temperature in the cutting zone when the machining parameters are known. The scientific activity was aimed at gaining new knowledge about the phenomena and observations concerning the chip temperature in the cutting zone during the "dry" milling of magnesium alloys. Selected magnesium alloys (AZ31 and AZ91D) belong to the group of materials for which there are certain limitations related to the risk and danger of ignition during processing, however, due to the interest in these materials of many contemporary researchers, their analysis is important, hence such a choice. In addition, the possibility of carrying out "dry" machining processes allows for the elimination of machining liquids, which has a positive effect on the environment. Milling was performed on the AVIA VMC 800HS machining center. Chip temperature measurements in the cutting zone were carried out using a high-speed FLIR SC 600HS thermal imaging camera.
The data deposited in repository are as *.csv format and *ods open format. The data included concern the change of cutting speed, AZ91D alloy and the two tools used (gamma 5 and gamma 30).
Celem działania naukowego było określenie wpływu parametrów procesu frezowania takich jak: parametry technologiczne (prędkość skrawania vc, posuw na ostrze fz, głębokość skrawania ap) oraz geometria ostrza narzędzia (różne kąty natarcia γ) na temperaturę wiórów w strefie skrawania. Dodatkowym celem przeprowadzonych badań było określenie wzajemnych zależności, pomiędzy parametrami technologicznymi a geometrią ostrza. W wyniku przeprowadzonych symulacji możliwe było również opracowanie modeli procesów, co pozwala na prognozowanie maksymalnej temperatury w strefie skrawania, gdy znane są parametry obróbki. Działanie naukowe miało na celu zdobycie nowej wiedzy na temat zjawisk i obserwacji dotyczących temperatury wiórów w strefie skrawania podczas frezowania „na sucho” stopów magnezu. Wybrane stopy magnezu (AZ31 oraz AZ91D) należą do grupy materiałów, w przypadku których występują pewne ograniczenia związane z ryzykiem i niebezpieczeństwem zapłonu podczas obróbki, jednak ze względu na zainteresowanie tymi materiałami wielu współczesnych badaczy ich analiza jest istotna, stąd też taki wybór. Dodatkowo możliwość realizacji procesów obróbkowych „na sucho” pozwala na wyeliminowanie cieczy obróbkowych co pozytywnie wpływa na środowisko. Obróbka frezowaniem przeprowadzona została na centrum obróbkowym AVIA VMC 800HS. Pomiary temperatury wiórów w strefie skrawania realizowane były za pomocą szybkiej kamery termowizyjnej FLIR SC 600HS.
Dane zdeponowane w repozytorium zostały zapisane w formatach *.csv oraz otwartym formacie *ods. Umieszczone dane dotyczą zmiany prędkości skrawania stopu AZ91D oraz dwóch zastosowanych narzędzi (gamma 5 oraz gamma 30).
milling, magnesium alloys, the chip temperature, simulation, neural network, frezowanie, stopy magnezu, temperatura wiórów, symulacje, sieci neuronowe
CC BY - Creative Commons Attribution 4.0
Please select a file or files to be deleted.
The file(s) will be deleted after you click on the Delete button.
Files will not be removed from previously published versions of the dataset.
Please select a file or files to be edited.
For selected file(s) set a license to
Please select a file or files to be downloaded.
Please select a file or files for access request.
Please select restricted file(s) to be unrestricted.
You need to Log In/Sign Up to request access to this file.
Please confirm and/or complete the information needed below in order to continue.
Asterisks indicate required fields
Access to file(s) subject to additional consent under following conditions:
The restricted file(s) selected may not be downloaded because you have not been granted access.
Click Continue to download the files you have access to download.
Are you sure you want to delete this dataset and all of its files? You cannot undelete this dataset.
Are you sure you want to lift the embargo?
Once you lift the embargo, you will not be able to set it again.
Are you sure you want to delete this draft version? Files will be reverted to the most recently published version. You cannot undelete this draft.
Use a Private URL to allow those without Dataverse accounts to access your dataset. For more information about the Private URL feature, please refer to the User Guide.
Private URL has not been created.
Are you sure you want to disable the Private URL? If you have shared the Private URL with others they will no longer be able to use it to access your dataset.
You will not be able to make changes to this dataset while it is in review.
This dataset cannot be published until Mechanical Engineering is published. Would you like to publish both right now?
Once you publish this dataset it must remain published.
Are you sure you want to republish this dataset?
Select if this is a minor or major version update.
This dataset cannot be published until Mechanical Engineering is published by its administrator.
This dataset cannot be published until Mechanical Engineering and Lublin University of Technology are published.
Are you sure you want to deaccession? The selected version(s) will no longer be viewable by the public.
Contact person for this dataset, having substantive knowledge of the data
Please fill this out to prove you are not a robot.