If you don't see your institution, add your dataset to the main dataverse named "RepOD".
Select the dataverse to which you want to add the new dataset:
You need to Sign In/Sign Up to add a dataset.
Share this dataset on your favorite social media networks.
Kwatek, Konrad, 2024, "Data for publication Lithium mobility along conduction channels of ceramic LiTa2PO8", https://doi.org/10.18150/TRKHJM, RepOD, V1
Learn about Data Citation Standards.
In the next generation of lithium-ion batteries, the liquid electrolyte is considered to be replaced by its solid counterpart. Recently, a novel Li-ion conductor based on metal oxides emerged – LiTa2PO8. Due to the high value of bulk conductivity of ca. 10−3 S∙cm−1, it is believed to be a potential candidate for application as a solid electrolyte in all-solid-state battery technology. In this work, we investigate LiTa2PO8 ceramics synthesized by a conventional solid-state reaction method with an excess of the lithium-containing substrate to compensate for the loss of Li+ during sintering. The properties of LiTa2PO8 ceramics were studied using X-ray diffractometry (XRD), 6Li and 31P magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), thermogravimetry (TG), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), impedance spectroscopy (IS), DC potentiostatic polarization technique and density method. Referring to the experimental results, increasing of the Li+ content above the stoichiometric one lowers the total ionic conductivity. The reasons for the deterioration and correlations between microstructure, phase composition, and ionic conductivity are presented and discussed. The MAS NMR spectroscopy has been used to explain high bulk ionic conductivity of LiTa2PO8 ceramics. A maximum value of total ionic conductivity, 4.5 × 10−4 S∙cm−1, was obtained at room temperature for the sample without any excess of Li+ source.
ceramika, LiTa2PO8, stały elektrolit
K. Kwatek, W. Ślubowska-Walkusz, E. Kwiatkowska, J.L. Nowiński, A.T. Krawczyńska, I. Sobrados, V. Diez-Gómez, J. Sanz, Lithium mobility along conduction channels of ceramic LiTa2PO8, Journal of the European Ceramic Society, Volume 43, Issue 13, 2023, Pages 5548-5556, ISSN 0955-2219, https://www.sciencedirect.com/science/article/pii/S0955221923003758 doi: 10.1016/j.jeurceramsoc.2023.05.013
CC BY - Creative Commons Attribution 4.0
Please select a file or files to be deleted.
The file(s) will be deleted after you click on the Delete button.
Files will not be removed from previously published versions of the dataset.
Please select a file or files to be edited.
For selected file(s) set a license to
Please select a file or files to be downloaded.
Please select a file or files for access request.
Please select restricted file(s) to be unrestricted.
You need to Log In/Sign Up to request access to this file.
Please confirm and/or complete the information needed below in order to continue.
Asterisks indicate required fields
Access to file(s) subject to additional consent under following conditions:
The restricted file(s) selected may not be downloaded because you have not been granted access.
Click Continue to download the files you have access to download.
Are you sure you want to delete this dataset and all of its files? You cannot undelete this dataset.
Are you sure you want to lift the embargo?
Once you lift the embargo, you will not be able to set it again.
Are you sure you want to delete this draft version? Files will be reverted to the most recently published version. You cannot undelete this draft.
Use a Private URL to allow those without Dataverse accounts to access your dataset. For more information about the Private URL feature, please refer to the User Guide.
Private URL has not been created.
Are you sure you want to disable the Private URL? If you have shared the Private URL with others they will no longer be able to use it to access your dataset.
You will not be able to make changes to this dataset while it is in review.
This dataset cannot be published until RepOD is published. Would you like to publish both right now?
Once you publish this dataset it must remain published.
Are you sure you want to republish this dataset?
Select if this is a minor or major version update.
This dataset cannot be published until RepOD is published by its administrator.
This dataset cannot be published until RepOD and are published.
Are you sure you want to deaccession? The selected version(s) will no longer be viewable by the public.
Contact person for this dataset, having substantive knowledge of the data
Please fill this out to prove you are not a robot.