If you don't see your institution, add your dataset to the main dataverse named "RepOD".
Select the dataverse to which you want to add the new dataset:
You need to Sign In/Sign Up to add a dataset.
Share this dataset on your favorite social media networks.
Ciemińska, Karolina, 2024, "Boosting the Antibacterial Activity of Phage-Derived Modular Enzyme MLE-15 with Natural Deep Eutectic Solvent as a Co-Drug Against Multidrug-Resistant Acinetobacter baumannii RUH134", https://doi.org/10.18150/OWFIIK, RepOD, V1
Learn about Data Citation Standards.
In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2-1 endolysin and catalytic domain EAD of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.97 ± 0.38°C, significantly higher than their natural counterparts derived from mesophilic sources. The minimum inhibitory concentration (MIC) of MLE-15 was 100 µg/mL for a panel of Gram-positive and Gram-negative bacteria, while the MIC of reline ranged from 6.25% to 25% v/v for the same strains. The addition of reline effectively reduced the MIC of MLE-15 from 3.15 to 50 µg/mL. This combination displayed additive effects for most strains and synergism for extensively antibiotic-resistant Acinetobacter baumannii and Bacillus subtilis. The subsequent evaluation revealed that MLE-15 eliminated planktonic cells of A. baumannii RUH134, but was ineffective against matured biofilms. However, combined with reline, MLE-15 reduced the bacterial load in the matured biofilm by 1.39 log units. Confocal fluorescence microscopy indicated that reline damaged the structure of the biofilm, allowing MLE-15 to penetrate it. Additionally, MLE-15 and its combination with reline entirely prevented the formation of a biofilm and eradicated meropenem-persistent cells of A. baumannii RUH134. Effectiveness in lowering the MIC value of MLE-15 as well as complete protection against biofilm formation and antibiotic-tolerant persister cells, indicate that MLE-15 and reline combination is a promising candidate for effective therapies in bacterial infections, which is especially important in the light of the global crisis of antimicrobial resistance.
modular lytic enzyme, endolysin, deep eutectic solvent, synergism, antibacterial effect, biofilm, persisters
CC BY - Creative Commons Attribution 4.0
Please select a file or files to be deleted.
The file(s) will be deleted after you click on the Delete button.
Files will not be removed from previously published versions of the dataset.
Please select a file or files to be edited.
For selected file(s) set a license to
Please select a file or files to be downloaded.
Please select a file or files for access request.
Please select restricted file(s) to be unrestricted.
You need to Log In/Sign Up to request access to this file.
Please confirm and/or complete the information needed below in order to continue.
Asterisks indicate required fields
Access to file(s) subject to additional consent under following conditions:
The restricted file(s) selected may not be downloaded because you have not been granted access.
Click Continue to download the files you have access to download.
Are you sure you want to delete this dataset and all of its files? You cannot undelete this dataset.
Are you sure you want to lift the embargo?
Once you lift the embargo, you will not be able to set it again.
Are you sure you want to delete this draft version? Files will be reverted to the most recently published version. You cannot undelete this draft.
Use a Private URL to allow those without Dataverse accounts to access your dataset. For more information about the Private URL feature, please refer to the User Guide.
Private URL has not been created.
Are you sure you want to disable the Private URL? If you have shared the Private URL with others they will no longer be able to use it to access your dataset.
You will not be able to make changes to this dataset while it is in review.
This dataset cannot be published until University of Gdańsk is published. Would you like to publish both right now?
Once you publish this dataset it must remain published.
Are you sure you want to republish this dataset?
Select if this is a minor or major version update.
This dataset cannot be published until University of Gdańsk is published by its administrator.
This dataset cannot be published until University of Gdańsk and RepOD are published.
Are you sure you want to deaccession? The selected version(s) will no longer be viewable by the public.
Contact person for this dataset, having substantive knowledge of the data
Please fill this out to prove you are not a robot.