If you don't see your institution, add your dataset to the main dataverse named "RepOD".
Select the dataverse to which you want to add the new dataset:
You need to Sign In/Sign Up to add a dataset.
Share this dataset on your favorite social media networks.
Ognik, Katarzyna, 2025, "The Effect of Copper Nanoparticles on Liver Metabolism Depends on the Type of Dietary Fiber", https://doi.org/10.18150/1FCZ3U, RepOD, V1
Learn about Data Citation Standards.
Background/Objectives: A diet enriched with copper nanoparticles (CuNPs) exhibits a wide range of effects on liver metabolism, both positive and negative. Dietary fibers are the key components that may affect the absorption of minerals, including copper, and change their impact on organisms. Methods: Therefore, this study investigated whether and how supplementation with different sources of dietary fiber (cellulose, pectin, inulin, and psyllium) affects the function of CuNPs in the liver of male Wistar rats. Results: The results showed that CuNPs at different doses had varying effects on lipid metabolism and inflammation in the liver. Specifically, higher doses of CuNPs were associated with increased lipid accumulation and the activation of pro-inflammatory mechanisms. However, combining CuNPs with dietary fibers, such as psyllium and inulin, was beneficial in mitigating the effects of the examined nanoparticles, leading to reduced fat, cholesterol, and triglycerides in the liver. Combining psyllium with CuNPs showed the most substantial effect on liver metabolism and inflammation parameters. Furthermore, hepatic histology analyses showed that adding psyllium to the diet with CuNPs reduces changes associated with fat accumulation and mononuclear cell infiltration. The observed beneficial changes in the liver may have been related to a reduction in the gene expression level of sterol regulatory element-binding protein 1 and peroxisome proliferator-activated receptor gamma and cyclooxygenase-2. Conclusions: In conclusion, enriching the diet with dietary fibers such as psyllium can regulate the action of CuNPs, thereby improving lipid metabolism and reducing inflammation in the liver.
Marzec, A.; Fotschki, B.; Napiórkowska, D.; Fotschki, J.; Cholewińska, E.; Listos, P.; Juśkiewicz, J.; Ognik, K. The Effect of Copper Nanoparticles on Liver Metabolism Depends on the Type of Dietary Fiber. Nutrients 2024, 16, 3645 https://www.mdpi.com/2072-6643/16/21/3645 doi: https://doi.org/10.3390/nu16213645
CC0 Creative Commons Zero 1.0
Please select a file or files to be deleted.
The file(s) will be deleted after you click on the Delete button.
Files will not be removed from previously published versions of the dataset.
Please select a file or files to be edited.
For selected file(s) set a license to
Please select a file or files to be downloaded.
Please select a file or files for access request.
Please select restricted file(s) to be unrestricted.
You need to Log In/Sign Up to request access to this file.
Please confirm and/or complete the information needed below in order to continue.
Asterisks indicate required fields
Access to file(s) subject to additional consent under following conditions:
The restricted file(s) selected may not be downloaded because you have not been granted access.
Click Continue to download the files you have access to download.
Are you sure you want to delete this dataset and all of its files? You cannot undelete this dataset.
Are you sure you want to lift the embargo?
Once you lift the embargo, you will not be able to set it again.
Are you sure you want to delete this draft version? Files will be reverted to the most recently published version. You cannot undelete this draft.
Use a Private URL to allow those without Dataverse accounts to access your dataset. For more information about the Private URL feature, please refer to the User Guide.
Private URL has not been created.
Are you sure you want to disable the Private URL? If you have shared the Private URL with others they will no longer be able to use it to access your dataset.
You will not be able to make changes to this dataset while it is in review.
This dataset cannot be published until University of Life Sciences in Lublin is published. Would you like to publish both right now?
Once you publish this dataset it must remain published.
Are you sure you want to republish this dataset?
Select if this is a minor or major version update.
This dataset cannot be published until University of Life Sciences in Lublin is published by its administrator.
This dataset cannot be published until University of Life Sciences in Lublin and RepOD are published.
Are you sure you want to deaccession? The selected version(s) will no longer be viewable by the public.
Contact person for this dataset, having substantive knowledge of the data
Please fill this out to prove you are not a robot.